
Journal of Sound and <ibration (2002) 255(5), 883}898
doi:10.1006/jsvi.2001.4191, available online at http://www.idealibrary.com on
EXISTENCE OF NATURAL FREQUENCIES OF SYSTEMS
WITH ARTIFICIAL RESTRAINTS AND THEIR

CONVERGENCE IN ASYMPTOTIC MODELLING

S. ILANKO

Department of Mechanical Engineering, ;niversity of Canterbury, Christchurch 1, New Zealand.
E-mail: Ilanko@mech.canterbury.ac.nz

(Received 9 July 2001, and in ,nal form 7 December 2001)

A major limitation of the Rayleigh}Ritzmethod for determining the natural frequencies of
a system is the need to choose admissible functions that do not violate the geometric
constraints of that system (Courant 1943 Bulletin of the American Mathematical Society 49,
1}23). Several researchers have attempted to overcome this problem by asymptotically
modelling the rigid constraints with arti"cial (imaginary) restraints of very large sti!ness
(Courant 1943 Bulletin of the American Mathematical Society 49, 1}23; Warburton and
Edney 1984 Journal of Sound and <ibration 95, 537}552; Gorman 1989 Journal of Applied
Mechanics 56, 893}899; Kim et al. 1990 Journal of Sound and <ibration 143, 379}394; Yuan
and Dickinson 1992 Journal of Sound and<ibration 153, 203}216; Yuan and Dickinson 1992
Journal of Sound and <ibration 159, 39}55; Cheng and Nicolas 1992 Journal of Sound and
<ibration 155, 231}247; Yuan and Dickinson 1994 Computers and Structures 53, 327}334;
Lee and Ng 1994 Applied Acoustics 42, 151}163; Amabili and Garziera 1999 Journal of
Sound and <ibration 224, 519}539; Amabili and Garziera 2000 Journal of Fluids and
Structures 14, 669}690). While the numerical results thus obtained for the systems
considered in the literature were in close agreement with exact values for the natural
frequencies corresponding to the "rst few modes, sample calculations show that the error
introduced by the asymptotic modelling increases with mode number and therefore to
obtain accurate results for higher modes the magnitude of sti!ness should also be increased.
In any event, the error due to the asymptotic modelling would remain uncertain, except
when the correct frequency values are known. However, the use of arti"cial restraints with
negative sti!ness, a new concept which was introduced in a recent publication (Ilanko and
Dickinson 1999 Journal of Sound and <ibration 219, 370}378) paves the way for estimating
the error due to asymptotic modelling. This is possible since in this work, the Rayleigh}Ritz
frequencies of the constrained system were found to be bracketed by the frequencies of the
asymptotic models with positive and negative restraints. However, the use of arti"cial
restraints with negative sti!ness has raised some important questions: would a system with
a large negative restraint become unstable, and if so what is the guarantee that the
frequencies of the asymptotic model would converge to that of the constrained system? This
paper is the result of the author's attempt to answer these questions and gives a proof of
existence of natural frequencies for systems with arti"cial restraints (springs) having positive
or negative sti!ness coe$cients, and their convergence towards constrained systems. Based
on Rayleigh's theorem of separation, it has been shown that a vibratory system obtained by
the addition of h restraints to an n-degree-of-freedom (d.o.f.) system, where h(n, will have at
least (n!h) natural frequencies and modes and that as the magnitude of the sti!ness of the
added restraints becomes very large, these (n!h) natural frequencies will converge to the
(n!h) natural frequencies of a constrained system in which the displacements restrained by
the springs are e!ectively constrained.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION

The Rayleigh}Ritz method is a well-known technique for "nding upper-bound estimates of
natural frequencies. In his address to the American Mathematical Society [1], Courant
describes the di$culty in choosing &&the co-ordinate functions'' as the &&more annoying'' of
the two &&objections'' to the Rayleigh}Ritz method, the less annoying one being &&the
vagueness as to the accuracy of the approximation''. This di$culty arises because of the
need to satisfy the geometric constraints of a system. In the same reference, Courant
suggests the use of arti"cial sti!ness parameters having very large magnitude so that a rigid
constraint could be approximately modelled by a restraint. The e!ectiveness of this
approach has since been studied by several researchers for various interesting problems and
its applicability has also been extended to analyze rigidly connected systems and systems
with cracks [2}11]. The natural frequencies calculated using this asymptotic modelling
approach agreed well with benchmark values for the systems considered in references [2}9].
In the literature, the magnitude of non-dimensional sti!ness parameters used varies widely.
For example, in reference [4], non-dimensional sti!ness parameters with magnitudes of the
order of 10� were found to give results that were within 1% of exact results for the "rst four
natural frequencies of systems comprised of straight and curved beams, but higher
non-dimensional sti!ness parameters (of the order of 10�) have been used in other
publications [11] in determining up to the "rst eight natural frequencies of constrained
shells, where the magnitude to be used appears to have been determined by a trial and error
procedure until numerical convergency was observed. In a numerical experiment carried
out by the author, where the "rst "ve natural frequencies of a propped cantilever was
calculated by modelling it by a spring restrained cantilever, it was observed that the spring
sti!ness required to obtain convergence increased with the mode number. In general, the
sti!ness required to suppress the motion of a point may depend on factors such as the
proximity of the point to be constrained to a node.
It is worth noting that the problem of lack of knowledge on suitable sti!ness values was

recognized by Courant who states in reference [1] that it is &&worthwhile to study the
preferable choices of these arti"cial parameters'' because they must be &&large enough to
approximate rigidity but small enough to keep the necessary labour within reasonable
bounds''. In the articles cited here [2}9], calculations were limited to the "rst few modes and
the magnitude of sti!ness of restraints required to obtain accurate results was known only
because the exact solution to the problems was known. Until recently, there were no
techniques available to determine the error due to asymptotic modelling without
calculating the frequencies using an alternative method, or by checking the convergence
through numerical experimentation. However, the introduction of the use of arti"cial
springs with negative sti!ness in a recent article [12] o!ers a method for calculating the
error bounds due to asymptotic modelling. In this article, the sti!ness of the restraints was
permitted to be of both positive and negative values, the latter representing a new approach.
It was shown numerically that the natural frequencies obtained for a given system (by using
an exact solution or a Rayleigh}Ritz solution with a "xed number of terms in the
displacement series) converged towards those of the corresponding rigidly constrained or
connected system from below as the magnitude of the positive arti"cial spring sti!ness was
increased, and from above as the absolute value of the negative spring sti!ness was
increased. These characteristics permit the very useful and simple estimation of the bounds
on the error introduced by the asymptotic modelling procedure.
Since the publication of reference [12], the author has participated in oral and e-mail

discussions with several interested researchers concerning the existence and convergence of
the natural frequencies for a system when springs of negative sti!ness are introduced. While
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the use of restraints with positive sti!ness appears to have been generally accepted, with
the use of negative sti!ness, the possibility of a system becoming unstable has raised the
questions, whether or not the introduction of the large negative sti!ness could result
in instability, and if so which frequencies would vanish. These questions have prompted
the author to do further research, the results of which are presented as two theorems,
namely the proof of existence of natural frequencies of negatively restrained systems and
their convergence towards the frequencies of the corresponding fully constrained system.
Before the analytical derivations, an explanation of how the asymptotic modelling works is
given.
When using springs with positive sti!ness approaching but less than plus in"nity to

model rigid constraints in a discrete system, the number of degrees of freedom (d.o.f.) of the
unconstrained system is e!ectively decreased by the number of constraints so modelled; and
the frequencies associated with the same number of modes approach in"nity. Each
time a restraint with very high sti!ness is added to a system, the highest natural frequency
of that system would approach in"nity. For a closed-form or in"nite series solution of
the equations governing the motion of continuous systems, there are no "nite highest
natural frequencies and hence this is of no consequence. However, for a truncated
series solution, all frequencies of the system will be "nite and a number of the frequencies,
equal to the number of constraints being modelled by the springs, will approach in"nity.
This is of little consequence practically, since the truncated series solution will normally
only be accurate for the lower modes of vibration, and with the exception of systems where
coincident roots occur, it is the frequencies corresponding to highest modes that become
in"nite.
When springs of negative sti!ness are used to model constraints, as the absolute values of

their sti!ness are increased toward in"nity, again the number of d.o.f. of the system is
reduced by the number of springs introduced. This time, however, some of the frequencies
become imaginary as the spring sti!nesses reach certain values and the square of each of
these frequencies (proportional to the eigenvalues of the problem) becomes negative in"nity
as the corresponding sti!ness tends towards minus in"nity. With the addition of each
negative restraint, the lowest natural frequency would become imaginary indicating a state
of instability.
In both of the above cases, some of the "nite, real frequencies will converge towards

a natural frequency of the corresponding rigidly constrained system as the absolute value of
the sti!ness of each arti"cial spring tends towards in"nity. (Here, the &&corresponding rigidly
constrained system'' would be the true system if an exact solution were being used or
a system represented by a truncated series solution if such a solution were being used. The
e!ect of any truncation is not modi"ed.) The number of frequencies that asymptotically
approach those of the corresponding constrained system is equal to the number of d.o.f. of
the unconstrained system minus the number of restraints introduced.
The validity of the above statements can be inferred from the excellent and famous

work of Lord Rayleigh [13], in which he describes several theorems and proofs dealing
with the convergence of the periods of free vibration as the potential or kinetic energies
of a system are increased or diminished in some manner. However, he does not speci"cally
refer to the use of springs of either positive or negative sti!ness for achieving the changes
in the potential energies. In the opinion of the author, it is not easy to derive concise
proofs of the existence and convergence of the natural frequencies of asymptotically
modelled systems directly from Rayleigh's arguments. Hence, the author has derived the
alternative proofs presented here. A numerical example illustrating the behaviour of
a discrete system with the addition of springs of positive and negative sti!ness is also
presented.
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2. THEORETICAL DERIVATIONS

2.1. THE NATURAL FREQUENCIES OF AN n-d.o.f. SYSTEM WITH ONE ADDITIONAL POSITIVE

OR NEGATIVE RESTRAINT

Consider an n-d.o.f. system. Let us refer to this as the &&original system'' or system A.
Figure 1a shows a typical spring}mass system, which may be used as an illustration. If we
now add to this system, a spring having a sti!ness k

�
, the total potential energy of the

system will have an additional term

�<"�
�
k
�
q�
�
, (1a)

where q
�
is the displacement that is being restrained by the spring (see Figure 1(b)). In a case,

where the spring restrains the relative displacement of two co-ordinates q
�
and q

�
, as shown

in Figure 1(c), the additional potential energy term will take the form

�<"�
�
k
�
(q

�
!q

�
)�. (1b)

Let us refer to the new system, which has been obtained by modifying system A by adding
one spring, as system A

�
.
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For positive sti!ness values, increasing the magnitude of sti!ness cannot decrease the
Rayleigh Quotient, and hence the natural frequencies of the modi"ed system (A

�
) will be

upper bounds to the natural frequencies of the original system (A) [13]. Denoting the mth
natural frequencies of systems A and A

�
by �

�
and �

���
, respectively, the above statement

may be expressed as

�
�
)�

���
for k

�
'0. (2)

The natural frequencies may be expressed in terms of kinetic and potential energies as
follows:

(�
�
)�"min�

<

�� subject to mN .u ' u
�
"0 for i"1, 2,2, (m!1), (3a)

(�
���

)�"min�
<#�<

� � subject to mN .u ' u
�
"0 for i"1, 2,2, (m!1), (3b)

where < is the potential energy of system A, and � is a kinetic energy function for systems
A or A

�
. The kinetic energy function consists of terms such as �

�
mN

�
q�
�
and is of the same form

for both systems, although its actual value would depend on the displacement form u that is
used in the analysis. The statement mN .u ' u

�
"0, for i"1, 2,2, (m!1) refers to the

conditions of orthogonality of the displacement formwith respect to the "rst (m!1) modes.
The highest natural frequency of System A

�
(�

���
) will increase monotonically with

sti!ness k
�
and, as

k
�

P R, �
���

P R. (4)

However, this does not happen with other natural frequencies for the following reasons.
As the sti!ness approaches in"nity, equation (3b) can be satis"ed in either of the two

ways. One possibility is where q
�
or (q

�
!q

�
) remains "nite while the change in potential

energy �<, and hence the right-hand side of equation (3b), approach in"nity thus making
the frequency approach in"nity. The alternative is that �< takes a de"nite value as a result
of the displacement q

�
or the relative displacement (q

�
!q

�
) becoming zero. In this case,

"nite values for natural frequencies are obtainable. This case is of more interest, because it
represents a system where a displacement of the point that is attached to the spring (or the
relative displacement between two points that are attached to the spring) is e!ectively
constrained, and this fact has been used by several researchers who have used asymptotic
models with springs of very large sti!ness to obtain estimates of natural frequencies of
constrained systems using the Rayleigh}Ritz procedure [1}12]. It will be shown that this
convergence to the constrained system occurs for (n!1) modes of a system with one added
restraint.
Considering the limiting case where k

�
approaches in"nity, the constrained system that is

being approached will have n!1 d.o.f., and hence n!1 natural modes and frequencies. Let
us refer to this system, which is obtained from the original system by adding a constraint
corresponding to the spring restraint, as AI

�
. A schematic representation of the constrained

systems corresponding to Figure 1(b) and 1(c) are shown in Figure 1(d) and 1(e) respectively.
We may consider the asymptotic model A

�
as slightly less sti! compared with the

constrained systemAI
�
. Therefore, all n!1 natural frequencies of the asymptotic model will

be equal to, or slightly lower than, the corresponding frequencies of the constrained system.
Denoting the mth natural frequency of system AI

�
by ��

���
, we may state this as

�
���

)�J
���

for m(n and k
�
'0. (5)
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Rayleigh has described the above inequality and its potential application in modelling
constrained systems in Articles 88 and 92(a) of reference [13] and the explanation given
above is similar to that in reference [13]. He has also stated in Article 88 that not only
restraints but also masses of very large magnitude could be used to model a constraint, and
has illustrated it through an example of a 2-d.o.f. system in Article 115.
Equation (5) may also be obtained analytically by applying Rayleigh's theorem of

separation [13, 14]. According to this theorem, the natural frequencies of a constrained
system are separated by the natural frequencies of the original system. Lord Rayleigh's
proof of the theorem of separation is based on Lagrange's equations of motion and uses
added restraints (alternatively the use of added masses or dashpots are also mentioned)
which when given in"nite values result in constrained systems. An alternative proof of this
theorem, which the author "nds simpler (it does not use restraints), is found in reference
[14] (pp. 35}39). Applying Rayleigh's theorem of separation to system A, we get,

�
�
)�J

���
)�

���
for 1)m(n. (6)

This is illustrated in Figure 2(a), where the solid lines correspond to the natural frequencies
of the original system (A) and the dotted lines show the natural frequencies of system AI

�
. It

should be noted here that while the inequality in equation (6) is applicable for any
constraint, we are only interested in the particular case where the constraint corresponds to
the restraint in system A

�
.

We can also apply Rayleigh's theorem of separation to system A
�
. This would give

�
���

)�J *
���

)�
�����

for 1)m(n, (7a)

where�J *
���

is themth natural frequency of systemA
�
subject to any additional constraint. If,

however, the additional constraint corresponds to the restraint (spring) in A
�
, then for this

particular constrained system (we will refer to this as &&the appropriately constrained
system'' in this part of the derivations but subsequently it will be assumed that the
constraints would correspond to the restraints), the restraint (spring) is redundant, as the
associated displacement is zero. Thus, if the system is appropriately constrained, the
resulting value of the mth natural frequency �J

���
is a special case of �J *

���
, i.e.,

�J
���

3�J *
���

. (7b)

Therefore, from equations (7a) and (7b) it is clear that

�
���

)�J
���

)�
�����

for 1)m(n. (7c)

It should be noted here that equations (7a)}(7c) are valid for both positive and negative
values of sti!ness as Rayleigh's theorem of separation is applicable to any system. The
left-hand side inequality of equation (7c) con"rms equation (5).
Combining equations (2) and (5) gives

�
�
)�

���
)�J

���
for 1)m(n and k

�
'0. (8)

Since there are (n!1) natural frequencies for system AI
�
, (n!1) natural frequencies of the

spring-restrained system A
�
will be bounded by the natural frequencies of the original

system and the constrained system as given by equation (8). This is to say that no matter
how large the magnitude of sti!ness k

�
is, for system A

�
there exist at least (n!1) natural

frequencies.
This also means, from equation (3b), that for the "rst (n!1) modes, as the magnitude of

the sti!ness parameter k
�
approaches in"nity, (�</�) has a limit. From this and equations



Figure 2. (a, b) Sketch of the variation of natural frequencies with sti!ness.
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(1a) or (1b), we may deduce that for the "rst (n!1) modes, as k
�
PR, either

q
�
P0, (9a)

or

(q
�
!q

�
)P0 (9b)

depending on whether the spring restrains a single displacement or a relative displacement
between two points, as otherwise (�</�)PR which is only true for the nth mode. This
means for the "rst (n!1) modes, as

k
�
PR, A

�
PAI

�
. (9c)

Using the right-hand side inequality of equation (8) and the fact that �
���

cannot decrease
with increasing k

�
, we can state that, as

k
�
PR, �

���
P�J

���
for 1)m(n. (10)

For very high values of sti!ness, these natural frequencies approach that of the constrained
system as given by equation (10). However, the highest natural frequency of system A

�
has

no such bounds, and increases monotonically with sti!ness as given by equation (4).
A sketch of the variation of the natural frequencies of systemA

�
with the sti!ness parameter

k
�
is shown in Figure 2(b).
Let us now consider the case of adding a restraint (for example, a spring) having

a negative sti!ness. If, for system A
�
, the sti!ness parameter k

�
were assigned a negative

value, then the resulting change in the potential energy would be negative. This means that
the natural frequencies of system A

�
would be less than or equal to the corresponding

frequencies of the original system.
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If �
���

, exists,

�
���

)�
�

for k
�
(0 and m)n. (11)

Since a decrease in sti!ness cannot cause an increase in natural frequencies, if �
�����

exists

�
�����

)�
���

for 1)m(n and for k
�
(0. (12a)

Combining equation (12a) and the right-hand side inequality in equation (7c) gives

�J
���

)�
�����

)�
���

for 1)m(n and k
�
(0. (12b)

From the above equation, it is clear that since there are (n!1) natural frequencies (�J
���

)
for the constrained system, there will also exist at least (n!1) natural frequencies for the
systemwith one negative spring. Similar to the arguments used for the positive sti!ness case,
for at least (n!1) modes, as k

�
P!R,

either q
�
P0, (13a)

or

(q
�
!q

�
)P0. (13b)

This means for (n!1) modes, as

k
�
P!R, A

�
PAI

�
. (13c)

Since the natural frequencies cannot increase with any decrease in sti!ness, using equations
(12b) and (13c), as

k
�
P!R, �

�����
P �J

���
for 1)m(n. (14)

Note that the lowest natural frequency of the constrained system occurs when m"1, and
this is approached by the second mode of the system with a spring having negative sti!ness.
The "rst natural frequency of the spring-restrained system would vanish if the magnitude of
the negative sti!ness were su$ciently large. These results may be summarized by the
following theorems.

Theorem 1(a). ¹he addition of one restraint with positive or negative sti+ness to an n-d.o.f.
system where n'1, results in a system, for which there exist at least (n!1) natural modes and
frequencies.

Theorem 1(b). As the magnitude of the sti+ness parameter approaches in,nity, the natural
frequencies and modes of the modi,ed restrained system would asymptotically approach those
of an (n!1)-d.o.f. system, which is obtained from the original system by the addition of an
appropriate constraint.

2.2. THE NATURAL FREQUENCIES OF AN n-d.o.f. SYSTEM WITH h ADDITIONAL POSITIVE OR

NEGATIVE RESTRAINTS

We can now seek to generalize the above theorems for a system with h additional
restraints whose sti!nesses may be negative or positive. Since the proof is by induction, it is
necessary to state the general theorems "rst.

Theorem 2(a). If h restraints of positive or negative sti+ness are added to an n-d.o.f. system (A)
where h(n, then for the resulting system (A

�
), there exist at least (n!h) natural frequencies

and modes.
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Theorem 2(b). Furthermore, as the h sti+ness parameters approach in,nity, the (n!h)
natural frequencies and modes of system A

�
would asymptotically approach those of the n-d.o.f.

system subject to h constraints (AI
�
).

2.2.1. Proof by mathematical induction

Let us denote the n-d.o.f. system subject to r restraints (where n'r'1) having positive
or negative sti!ness values by A

�
.

If Theorems 2(a) and (b) are true for A
�
then:

There will exist (n!r) natural frequencies and modes for A
�
; Statement 1(a)

and

As the r sti!ness parameters approach in"nity, the natural frequencies and modes of system
A

�
would asymptotically approach that of the n-d.o.f. system subject to r constraints

(AI
�
). Statement 1(b)

Applying Theorem 1(a) to systemA
�
, and using Statement 1(a), we can state that adding one

more spring restraint to A
�
will result in a new system A

���
for which there exist (n!r!1)

natural frequencies and modes. i.e.,

Theorem 2(a) is true for h"r#1 if it is true for h"r. Statement 2(a)

Applying Theorem 1(b) to AI
�
with an extra restraint, we can state that as the magnitude of

the sti!ness of the (r#1)th restraint (newly added) approaches in"nity, the resulting system
frequencies and modes would approach that of AI

���
. From Statement 1(b), as the sti!ness

parameters for the r restraints approach in"nity, the frequencies and modes of A
�
would

approach those of AI
�
. Therefore, if the magnitude of sti!ness of all r#1 restraints were to

approach in"nity, the natural frequencies and modes of A
���

would asymptotically
approach that of the n-d.o.f. system subject to r#1 constraints (AI

���
). i.e.,

Theorem 2(b) is true for h"r#1, if it is true for h"r. Statement 2(b)

From Theorems 1(a) and (b), Theorems 2(a) and (b) are true for h"1. From Statements 2(a)
and (b) they are true for h"r#1 if they are true for h"r.
Hence by induction, Theorems 2(a) and (b) are true for any h'0.

2.2.2. Applicability of ¹heorems 1 and 2 for continuous systems

The above arguments hold for continuous systems, with the exception of any reference to
the highest mode and the highest mode number n. For continuous systems, since a highest
mode does not exist, the condition that m(n, does not apply, and when using positive
sti!ness values for additional springs, all natural frequencies and modes will be bounded on
both sides by the natural frequencies of the corresponding constrained systems. This means
equation (4) does not hold as n (highest mode number) does not exist, and equations (5)}(8)
are true for all m'0.
However, when "nding the natural frequencies and modes using the Rayleigh}Ritz

procedure, continuous systems are e!ectively discretized and the highest mode number
n corresponds to the number of terms used in the Rayleigh}Ritz formulation for the
displacement.
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3. ILLUSTRATIVE EXAMPLE

Let us now consider a 5 d.o.f. linear spring}mass system to illustrate the above
derivations. The system is subject to two additional spring elements having sti!ness values
of k

�
and k

�
as shown in Figure 3(a). Let us refer to this system as system B

�
. The

magnitudes of the sti!ness of other springs are denoted by kM
�
, kM

�
, kM

�
, kM

�
, and kM

�
. Let the

displacements of the "ve masses mN
�
, mN

�
, mN

�
, mN

�
, and mN

�
be q

�
, q

�
, q , q

�
, and

q
�
respectively. Of the additional restraints, the spring having sti!ness k

�
restrains the

displacement of the second mass (q
�
) while the spring with the sti!ness k

�
restrains the

relative displacement between masses 3 and 5 (i.e. (q
�
}q

�
)).

The eigenvalue equation for the system is

[K]�q�!��[M]�q�"�0�, (15)

where the sti!ness and mass matrices are

[K]"�
kM
�
#kM

�
!kM

�
0 0 0

!kM
�

kM
�
#kM

�
#k

�
!kM

�
0 0

0 !kM
�

kM
�
#kM

�
#k

�
!kM

�
!k

�

0 0 !kM
�

kM
�
#kM

�
!kM

�

0 0 !k
�

!kM
�

kM
�
#k

�

� , (16a)

[M]"�
mN

�
0 0 0 0

0 mN
�

0 0 0

0 0 mN
�

0 0

0 0 0 mN
�

0

0 0 0 0 mN
�

� . (16b)

These equations were solved for various combinations of sti!ness and mass parameters, and
in all cases the results con"rmed the existence of natural frequencies and modes and their
convergence as predicted by Theorems 1 and 2. Only some sample results are presented
here, for the case of, kM

�
"100 N/m and m�

�
"0)1 kg for i"1, 2,2, 5, and for various values

for k
�
and k

�
in the range !10� to #10�N/m. The results are shown graphically in

Figures 4 and 5, and numerically in Tables 1 and 2.

3.1. RESULTS FOR ONE ADDITIONAL CONSTRAINT

Figure 4 and Table 1 show the variation of natural frequencies with k
�
, for k

�
"0. It may

be seen that for k
�
(!50N/m, there exist only four natural frequencies and modes, and as

k
�
takes very large negative values, all of them converge to the natural frequencies of the

5-d.o.f system subject to the constraint q
�
"0 (say system BI

�
, which is actually a 4-d.o.f.



Figure 3.

Figure 4. Variation of natural frequencies with sti!ness parameter k
�
for k

�
"0.
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Figure 5. Variation of natural frequencies with sti!ness parameter for k
�
"k

�
"k.

TABLE 1

Natural frequencies of system B
�
for k

�
"0

k
�

�
���

�
���

�
���

�
���

�
���

(N/m) (rad/s) (rad/s) (rad/s) (rad/s) (rad/s)

!1E#09 14)07346 39)43296 44)72136 56)98227
!1 000 000 14)07384 39)43365 44)72248 56)98258

!1000 14)47915 39)99207 45)89878 57)2834
!100 19)54395 41)09613 51)16673 59)00165
!50 22)70006 41)24934 52)18469 59)66538

!49)95 0)34293 22)70364 41)2495 52)18573 59)6662
!49)7 0)839183 22)72158 41)2503 52)19094 59)6703

!49 1)527944 22)77184 41)25256 52)20552 59)68181
!45 3)363623 23)06036 41)26548 52)28885 59)74899
!40 4)665215 23)42328 41)28178 52)39293 59)83629
!30 6)348633 24)15137 41)31478 52)60032 60)02251
!25 6)964984 24)51402 41)33149 52)70332 60)12171
!20 7)488754 24)87423 41)34834 52)80567 60)22514
!10 8)338074 25)58359 41)38243 53)0078 60)44521

0 9)000781 26)27315 41)41703 53)20555 60)68366
10 9)533173 26)93839 41)45211 53)39781 60)94127
100 11)79806 31)62278 41)78395 54)77226 64)14755

1000 13)71328 38)60747 43)73037 56)67423 110)4405
1 000 000 14)07308 39)43227 44)72024 56)98197 3162)59
1E#09 14)07346 39)43296 44)72136 56)98227 100 000)0
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TABLE 2

Natural modes of system BI
�

Mode No. (m) �J
���

(rad/s) q
�

q
�

q
�

q
�

q
�

1 14)07346 0 0 0)445042 0)801938 1
2 39)43296 0 0 1 0)445042 !0)80194
3 44)72136 1 0 0 0 0
4 56)98227 0 0 !0)80194 1 !0)44504
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system, as shown in Figure 3(b)). It is important to note that the convergence to the
frequencies of the constrained system is from above, for negative k

�
. It may also be noted

from Table 1 and Figure 4 that as k
�
takes very large positive values the "rst four natural

frequencies converge to the natural frequencies of the constrained system BI
�
from below,

while the highest natural frequency continues to increase monotonically. By comparing the
results for positive and negative values of sti!ness, the maximum deviation of the
frequencies of the restrained system from those of the constrained systemmay be found. For
example, the "rst natural frequency of the constrained system BI

�
is 14)07346 rad/s, and it is

bracketed by the natural frequencies of B
�
for k

�
"!1000 and 1000 N/m, which give the

lowest natural frequencies as 14)47915 and 13)71328 rad/s respectively. By increasing the
magnitude of sti!ness to 10� N/m, the lowest frequencies of B

�
is estimated as 14)07384 and

14)07308 rad/s for negative and positive values respectively. The results have converged to
the frequency of the constrained system to the fourth signi"cant "gure.
The natural modes of the constrained system BI

�
(q

�
"0) are shown in Table 2. The

modes are normalized by setting the highest displacement to unity. These "gures agree with
those obtained for the restrained system B

�
with k

�
"10� N/m, to four signi"cant "gures. It

may be noted that constraining q
�

e!ectively divides the physical system into two
subsystems. For the third mode, only the "rst mass vibrates while for all other modes the
vibration is con"ned to the third, fourth and "fth masses.

3.2. RESULTS FOR TWO ADDITIONAL CONSTRAINTS

Results for various combinations of k
�
and k

�
were obtained, and in all cases when very

large values were used for the magnitudes of k
�
and k

�
, three natural frequencies were found

to converge to those of system BI
�
shown in Figure 3(c). This constrained system has three

modes and frequencies, as two modes of the original system (B
�
) have been suppressed by

the constraints. The results of increasing both k
�
and k

�
at the same rate (i.e., a common

sti!ness factor k was increased where k
�
"k

�
"k), are shown in Figure 5 and Table 3. The

natural frequencies and modes corresponding to the system with two constraints (BI
�
) are

shown in Table 4.
It is interesting to note that if one were to plot the variation of frequency with sti!ness by

following particular modes, two of the natural frequency curves actually appear to cross
each other at a sti!ness value of 100 N/m. This may not be apparent because the symbols on
the "gure are used to represent the various frequencies according to their rank only. This
was done in order to be consistent with the notation �

���
which denotes the mth natural

frequency of a system subject to h constraints. By following the modes, one can see that the
frequency curves do cross each other and swap ranks. However, once the curves
corresponding to the frequencies that monotonically increase cross the line representing the



TABLE 3

Natural frequencies of system B
�
for k

�
"k

�
"k

K �
���

�
���

�
���

�
���

�
���

(N/m) (rad/s) (rad/s) (rad/s) (rad/s) (rad/s)

!1000 18)86284 45)8148 56)67515
!800 19)18655 46)07655 56)73231
!600 19)76077 46)49845 56)82708
!400 21)03744 47)27902 57)01354
!200 25)44589 49)06429 57)53048
!150 28)0757 49)85748 57)82907
!100 31)62278 50)85715 58)31401
!50 35)95682 52)02986 59)1608

!49)9 0)452968 1)261079 35)96636 52)03229 59)16304
!49)5 1)011851 2)818742 36)00456 52)04202 59)17204

!40 4)419599 12)47887 36)93324 52)27282 59)39893
!30 6)100281 17)43285 37)96044 52)51412 59)66703
!20 7)29641 21)05246 39)04649 52)75148 59)9684
!10 8)233108 23)92362 40)19788 52)98266 60)30625

0 9)000781 26)27315 41)41703 53)20555 60)68366
10 9)647369 28)2219 42)70031 53)41828 61)10339
80 12)399 35)57945 54)55515 52)26533 65)36389
110 13)0826 37)10449 54)86658 55)95276 67)90471
120 13)27381 37)51206 54)95259 57)08374 68)83539
150 13)76487 38)52397 55)16861 60)19689 71)82751
200 14)38295 39)72924 55)42623 64)64725 77)22295
300 15)18232 41)17203 55)72868 72)06286 88)17948
400 15)67511 41)99 55)89608 78)57359 98)45278
500 16)00852 42)50971 56)0011 84)57331 107)9254

1000 16)77823 43)59996 56)2196 109)9501 146)86
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highest frequency of the constrained system, no cross overs occur. This means that if
positive sti!ness values are used in an asymptotic modelling, care should be taken to ensure
that the sti!ness values used are su$ciently large, so that only the modes that converge to
the constrained modes will be in the range of interest. However, the convergence may be
veri"ed by using results for large negative sti!ness values, and delimit the frequency between
the two estimates (one obtained for positive sti!ness and another for negative sti!ness).
The values of negative sti!ness at which the determinant of the sti!ness matrix becomes

zero can be found by solving det [K]"0. In general, for two negative restraints, this may
occur at two di!erent values of sti!ness parameters, but for the particular choice of sti!ness
parameters, this happens only at one point when k

�
"k

�
"!50N/m. Once the critical

values of k (say k
�� �

for i"1,2, h) at which the determinant of the sti!ness matrix vanishes
are found, then by using sti!ness parameters which are lower than all critical sti!ness values
(k

�� �
) it is possible to ensure that all frequencies calculated are the ones that asymptotically

approach the frequencies of the constrained system.

4. CONCLUSIONS

A mathematical proof has been presented to show that if h restraints of positive or
negative sti!ness are added to an n-d.o.f. system (A), where h(n, then for the resulting
system (A

�
), there exist at least (n!h) natural frequencies and modes and that as the



TABLE 4

Natural modes of system BI
�

Mode No. (m) �J
���

(rad/s) q
�

q
�

q
�

q
�

q
�

1 17)71607 0 0 0)84307 1 0)84307
2 44)72136 1 0 0 0 0
3 56)44591 0 0 !0)59307 1 !0)59307
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h sti!ness parameters approach in"nity, the (n!h) natural frequencies and modes of system
A

�
would asymptotically approach those of the n-d.o.f. system subject to h constraints (AI

�
).

The errors due to asymptotic modelling of rigid constraints and connections may be
determined by using both positive and negative values for the sti!ness of the restraints in the
asymptotic models. Alternatively, the magnitude of sti!ness required to keep the error due
to asymptotic modelling within desired tolerance may be determined. Therefore, asymptotic
modelling may be safely used in natural frequency calculations using the Rayleigh}Ritz
procedure, without the need to select admissible functions which satisfy geometric
constraint conditions.
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